If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-4w=319
We move all terms to the left:
3w^2-4w-(319)=0
a = 3; b = -4; c = -319;
Δ = b2-4ac
Δ = -42-4·3·(-319)
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-62}{2*3}=\frac{-58}{6} =-9+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+62}{2*3}=\frac{66}{6} =11 $
| 2x/3=4x/5 | | x+(x*18/100)=900 | | 5x-78=2x+78 | | 5x/2+3=2 | | -1.2=y/4.4 | | 6x+40+2=90 | | 5x+35=2x−10 | | (x+66)+(2x)=180 | | 5(x+7)=2x−10 | | (2x+9)/5=5 | | 2x/9+9/5=5 | | X+x/100=357,95 | | (7x-5)/10=10 | | 2x+2(4x)=560 | | -8(-7n-6)+4=10(2+6n) | | 7x/10-5/10=10 | | 5/e-2=3 | | 5-3(x+1=5 | | x^2+3x+17.5=0 | | 1-4(2x+3)=5(x-3)-3(x-1) | | 2(x+3)+1=8 | | x^2+0.5x^2=80 | | 8x/2=30 | | 9g+8g+743g=2 | | C=5(f-32)•9 | | 22-2x=4 | | 7^x2=7^2x+3 | | 6x^2-3x=2x^2-2 | | 6x^2-3x=4x^2-2 | | 11y+0(1-y)=1y+12(1-y) | | (5x)2+16x+2=0 | | (x+5)/(x-3)=7 |